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Abstrakt: 
V problémech s ordinálním pořadím jsou objekty, alternativy, produkty, služby apod. 
seřazeny několika experty a cílem je získat z těchto (obecně odlišných) pořadí jedno výsledné 
(konsensuální) pořadí. Dosažení tohoto cíle nicméně závisí na stupni shody mezi jednotlivými 
pořadími. Pokud jsou pořadí náhodná, nemůžeme očekávat dosažení smysluplné shody, ale 
pokud jsou si pořadí „blízká“ a vyjadřují shodu mezi experty, pak má výsledné konsensuální 
pořadí smysl. Cílem tohoto článku je ukázat způsoby hodnocení podobnosti pořadí, které je 
založeno na použití Kendallova τ a W, Spearmanova ρ, Pearsonova r a skalárního součinu 
vektorů. Jsou zde diskutovány případy bez remíz (shodných hodnocení) i s remízami, stejně 
tak jako problém podobnosti mezi dvěma neúplnými pořadími (nejlepšími k pořadími). 
Vysvětlení jsou založena na příkladech. 
 
Abstract: 
In ordinal ranking problems objects, alternatives, products, services, etc. are ranked by several 
experts and the goal is to convert a set of (generally different) rankings into the final group 
consensus ranking. However, this goal depends on a degree of agreement among rankings. 
With random rankings one cannot expect to get meaningful consensus, but if rankings are 
„close“ and represent agreement between experts, then the final group consensus has much 
more sense. The aim of this article is to present the evaluation of similarity among rankings, 
which is based on Kendall’s τ and W, Spearman’s ρ, Pearson’s r and dot product of vectors. 
Cases without and with ties are discussed as well as a problem of similarity between 
incomplete rankings (top k lists). Explanations are based on examples. 
 
 
 
1 Introduction 
 
In many situations people, products, services, companies, countries, etc. are ranked (rated) 
from the best to the worst with regard to some set of criteria such as achievement, price, 
profit, population, etc. In general, such settings form ordinal ranking problems dealing with 
ordinal variables, which assign numbers to objects or events which represent their rank order 
(1st , 2nd , 3rd , etc.) according to some criterion. With more than one ranking or more than one 
criterion two problems arise: 

• To get one final consensus ranking of objects (this constitutes well-known ordinal 

consensus ranking problem). 

• To evaluate agreement (consistency) among experts by evaluating similarity among 
rankings. 
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As for the first problem, many methods converting set of rankings into one consensus ranking 
were proposed, such as Borda-Kendall’s method of marks, CRM, DCM, MAH etc., and there 
exists comprehensive literature on the topic ([2], [9]). However, little attention have been paid 
to examination of agreement among these methods which do not always yield the same results 
[9]. It can be only speculated that the methods give the same (or very close) results when 
there is a high degree of agreement among experts (and rankings are similar) while the 
methods differ in cases with random (nonsimilar) expert’s rankings. There are only few 
papers on consistency among experts‘ ratings too (e.g. [8]).    
 
Therefore, the aim of this article is to focus on the second problem, which has been rather 
neglected so far. In Section 2 concepts of similarity, dissimilarity and distance are introduced. 
Evaluation of similarity between two rankings without ties is involved in Section 3 and with 
ties in Section 4. Section 5 examines similarity of more than two rankings and finally Section 
6 is devoted to brief discussion of similarity between two incomplete rankings. For better 
understanding explanations are based on examples.  
 
 
2 Similarity, dissimilarity and its measurement 
 
Similarity is a measure of proximity between two or more objects or variables. On the other 
hand, dissimilarity is a measure of difference (distance) between objects or variables. Both 
measures are conventionally normalized to take the value from intervals 0,1  or 1,1− . The 

dissimilarity can be measured by a function called distance or metric.    
 
A metric on a set X is a function d : X × X → R, which satisfies the following conditions: 

1. d(x, y) ≥ 0     
2. d(x, y) = 0   if and only if   x = y      
3. d(x, y) = d(y, x)      
4. d(x, z) ≤ d(x, y) + d(y, z),   for x, z, y ∈  X.   

Function d satisfying only conditions 1. to 3. is called distance.  
 
Ordinal data can be represented as (ordered) sets, vectors or matrices. For all formats there 
exist suitable distances. Distance between two sets A nad B can be measured e.g. via Jaccard 
metric [6]:  
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where ( ) ( )A B A B B A∆ ≡ − ∪ − is a symmetric difference between sets A and B.   

 
Distance between vectors A = (a1,…,an) and B = (b1,…,bn) can be defined as lp metric [6]: 
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Analogically, the distance between matrices A = (aij) and B = (bij), where i = 1 to n, j = 1 to m, 
p N∈ , is given as: 
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Distance between ordered sets (rankings) can be measured by Kendall’s, Spearman’s or 
Pearson’s correlation coefficients, and by dot product of two vectors in n-dimensional 
Euclidean space. 
 
 
3 Similarity between two rankings without ties  
 
In ordinal ranking problem, preferences of an expert can be strong or weak. In the former case 
all pairs of objects are compared and form totally ordered set. In the latter case some pairs of 
objects are not compared and this situation is regarded as a „tie“, objects form partially 

ordered set (poset). 
  
Let N be the set of n objects, for example N = {A, B, C, D}, with binary relation r „is better 
than“ which is antisymmetric, transitive and total: 

r = {[B, A], [C,A], [A,D], [B,C], [B,D], [C,D]}, 

where for example [B,A] means “B is better than A”. Then the set O = [B, C, A, D] is the 
totally ordered set, objects A, B, C, D have ranks 3, 1, 2, 4 and the vector (3, 1, 2, 4) is the 
ranking (the ranking vector). In general, rankings take format A = (a1, a2, ...,an), where ai is 
the rank of the object i.  
 

3.1 Kendall’s rank correlation coefficient τ 

Let A and B be two rankings on the same domain (on the same set of objects). Kendall’s rank 
correlation coefficient τ  is defined as [1]:  
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where nc is the number of concordant pairs and nd is the number of discordant pairs. 
Concordant (discordant) pair is the ordered pair of objects, which has the same (opposite) 
order in both rankings. Kendall’s τ is normalized to interval 1,1− . In the case of maximum 

similarity between two rankings τ = 1 (rankings are identical). In the case of maximum 
dissimilarity τ = –1 (one ranking is reverse of the other). Interpretation of the correlation 
coefficient‘s size for positive values according to Chráska (see [5]) is given in Table 1. 
 

   Table 1. Interpretation of the correlation coefficient’s size for positive values. Source: [5]. 
Correlation coefficient Dependance between variables 

1 absolute  
0.9 - 1 very high 

0.7 - 0.9 high  
0.4 - 0.7 medium  
0.2 - 0.4 low  
0 - 0.2 very low  

0 none  



122 

3.2 Spearman‘s rank correlation coefficient ρ 

Another measure of a correlation between two rankings of n objects is Spearman‘s rank 
correlation coefficient ρ given as [5]:  
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where di is the difference in rankings for each object i, { }1, 2,...,i n∈ . Speaman‘s ρ is 

normalised to interval 1,1−  and its interpretation is analogous to Kendall‘s τ. In contrast to 

Kendall τ, Spearman‘s ρ can be used for problems with ties. Also, it can be used for the data 
which are not normally distributed [8].  
 

3.3 Pearson‘s correlation coefficient r 

Pearson correlation coefficient r between two variables X and Y is defined as [7]:  
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where E is the expected value operator and σx, σy are standard deviations. Again, r takes value 
from interval 1,1−  and its interpretation is the same as above. Pearson’s r can be used for 

problems with ties too. 
 
Pearson‘s correlation coefficient is a measure of linear dependance of two variables while 
Spearman‘s correlation coefficient measures the extent to which both variables can be 
described by monotonic (not necessary linear!) function. If both variables increase or decrease 
(one increases and the other decreases), then correlation coefficient is positive (negative).    
 

3.4 Dot product of vectors 

Another approach to similarity stems from geometry. If we imagine rankings as n-
dimensional vectors in n-dimensional Euclidean space with initial points in 0 (see Fig. 1), 

then the angle between vectors a
r

 and b
r

can be computed by dot product of vectors:  

cos
a b

a b
ϕ

⋅
=

⋅

r r

r r       (4) 

This measure is standardized, because cos 1,1ϕ ∈ − , and it can be shown it is equivalent to 

Pearson’s correlation coefficient for centered data (data with a mean equal to zero) [7]. If 
vectors are identical, then φ = 0 and cos φ = 1, and if vectors are opposite, then φ = 180° and 
cos φ = –1, as desired. The smaller is φ, the closer are both vectors.   
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Fig. 1. Two vectors a and b containing angle φ. Source: own. 
 
 

3.5 Example 

Two (fictional) magazines, Auto Magazine (AM) and Car Revue (CR), have evaluated car 
reliability of eight car manufacturers and ranked them from the best (1. place) to the worst (8. 
place), see Table 2. Evaluate Kendall’s, Spearman’s and Pearson’s correlation coefficients 
between rankings. Use dot product too.  
 
   Table 2. Car manufacturers reliability ranking. Source: own. 

Rank Auto Magazine Car Revue 

1 Mazda Mazda 
2 BMW Honda 
3 Honda BMW 
4 Audi Audi 
5 Toyota Ford 
6 VW VW 
7 Ford Toyota 
8 Nissan Nissan 

 
 

• Kendall’s τ  

For n objects there are 
2

n 
 
 

pairs to compare, for n = 8 the number of pairs is 28. Discordant 

pairs are: {(BMW,Honda), (Toyota,Ford), (Toyota,VW), (VW,Ford)}, so nc = 24 and nd = 4. 
From (1) we get:  

( )

24 4
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1 1
1 8 7

2 2

c d
n n

n n
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The similarity between both rankings is rather high and this result can be interpreted so that 
experts from both magazines mostly agree on the topic.  
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The next issue is whether this agreement is accidental or not. Distribution of τ for larger 

values of n converges to normal distribution with a mean 0 and variance 
2(2 5)

9 ( 1)

n

n n

+

−
 [1]. A null 

hypothesis H0: „Agreement between both rankings is accidental.“ can be tested with 
standardized Z value [1]:  

2(2 5)
9 ( 1)

Z
n

n n

τ τ

σ
= =

+

−

     (5) 

For n = 8 and significance level α = 0.05 the critical value is 0.571 [5].  From (5) we get Z = 
2.47, which exceeds critical value and we reject the null hypothesis. Agreement between both 
rankings is not accidental (is statistically significant).  

• Spearman’s ρ  

We rearrange rankings according to manufacturer (see Table 3) and compute difference d and 
its square d2 in rankings of each manufacturer. 
 
         Table 3. Rearrangement of Table 2. Source: own. 

Manufacturer AM rank CR rank d d2 

Audi 4 4 0 0 
BMW 2 3 -1 1 
Ford 7 5 2 4 

Honda 3 2 1 1 
Mazda 1 1 0 0 
Nissan 8 8 0 0 
Toyota 5 7 -2 4 

VW 6 6 0 0 

 
From Table 3 and (2) we get: 
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Similarity between both rankings is high. 
 

• Pearson’s r  

From (3) and Table 3 we get: 
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Because the data are ordinal, Pearson‘s r is equal to the Spearman‘s ρ. 

• Dot product 

From (4) we get: 
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Similarity between both rankings is very high. The angle between both vectors φ = 12°43’. 
(The value 0.975 differs from Pearson’s correlation coefficient because the data are not 
centered). 

 
 

4 The similarity of two rankings with ties 
 
Kendall’s τ was found to be flawed in cases with weak preferences (ties) by Emond and 
Mason [3]. They proposed modified correlation coefficient τx which is equivalent to Kendall’s 
τ for strong preferences and for weak preferences ties are given score 1 rather than 0 [3]: 
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In the notation above, preferences A and B are given as matrices of order n with aij = 1 if 
object i is preferred to object j and aij = –1 vice versa. Diagonal elements are zero.   
 
Pearson’s and Spearman‘s correlation coefficients given by (3) and (4) treat ties well. In the 
case of ties, equal objects have the same rank which is the mean of their ranks if they would 
follow one after another.    
 

4.1 Example 

Evaluate similarity (correlation) between two rankings in Table 4 by Pearson’s r. 
 
          Table 4. Rankings with ties. Source: own. 

Rank Auto Magazine Rank Car Revue 

1. Mazda 1.-2. Mazda, Honda 
2.-3. BMW, Honda 3. BMW 

4.  Audi 4. Audi 
5. Toyota 5. Ford 

6.-7. VW, Ford 6.  VW 
8. Nissan 7.-8.  Toyota, Nissan 

 
We rearrange rankings according to manufacturer (Table 5). For tied ranks we use halves: 1.5, 
2.5, etc.   
 

   Table 5. Rearrangement of Table 4. Source: own. 

Manufacturer AM rank CR rank 

Audi 4 4 
BMW 2.5 3 
Ford 6.5 5 

Honda 2.5 1.5 
Mazda 1 1.5 
Nissan 8 7.5 
Toyota 5 7.5 

VW 6.5 6 

 
Using Table 5 and (3) we get:  
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The similarity between the rankings is high. 
 
 
5 The similarity of more than two rankings  
 

5.1 Kendall’s coefficient of concordance (W) 

For assessing agreement among more than two rankings on the same domain without or with 
ties Kendall’s coefficient of concordance (Kendall’s W) is used. It ranges from 0 – no 
agreement, to 1 – complete agreement. It is given by [5]: 
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where Xi is the sum of ranks for object i, k is the number of rankings and n is the number of 
objects. 
 
Statistical significance of Kendall’s W can be evaluated by χ2 test with n – 1 degrees of 
freedom [5]: 

( )2 1W k nχ = ⋅ ⋅ −       (7) 

 
5.2. Example 
Eight car manufacturers were ranked by four (fictional) magazines: Auto Magazine (AM), 
Car Revue (CR), World of Motors (WoM) and Moto Sport (MS), see Table 6. Evaluate 
similarity among rankings using Kendall’s W. 
 

Table 6. Four rankings of eight car manufacturers. Source: own. 
Manufacturer AM rank CR rank WoM rank MS rank Sum of Xi Sum of Xi

2 

Audi 4 4 3 4 15 225 

BMW 2 3 2 1 8 64 

Ford 7 5 5 6 23 529 

Honda 3 2 4 3 12 144 

Mazda 1 1 1 2 5 25 

Nissan 8 8 8 7 31 961 

Toyota 5 7 6 5 23 529 

VW 6 6 7 8 27 729 

 
Sum of Xi = 144, sum of Xi

2 = 3206, k = 4, n = 8. From (6) we get: 
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Thus, there is very high agreement among rankings. 
 
For statistical significance of Kendall’s W relation (7) is used. We can test the null hypothesis 
H0: „Computed Kendall’s W does not evidence agreement among rankings (W = 0).“, against 
alternative hypothesis HA: „Computed Kendall’s W evidence agreement among rankings 
(W ≠ 0).“ In our case: 

( )2 1 0,914 4 7 25.59W k nχ = ⋅ ⋅ − = ⋅ ⋅ =  

Critical value for n – 1 = 7 degrees of freedom and significance level α = 0.05 is 2
0,05 (7)χ  = 

14.07 [5]. Thus we reject the null hypothesis H0 and accept the alternative hypothesis HA. 
There is statistically significant agreement among rankings. 
 

 

6 The similarity between incomplete rankings (top k lists) 
 
In previous sections all rankings were defined on the same set of objects (domain), but there 
are situations were ranking domains are not the same. For example Internet search engines 
give different top 10 lists of items on the first page. To measure distance between two 
rankings on different domains generalized Kendall’s tau was proposed by Fagin et al. [4]. 
They define generalized Kendall’s distance K between top k lists τ1 and τ2 as [4]: 

( ) ∑= ),(, 21

)(
,21

)( ττττ
p

ji
p

KK , 

where ,i jK  is a penalty function for each pair (i, j) of objects. In general, there are four cases 
that must be resolved separately [4]: 

a) Objects i and j are in both rankings. Then penalty function K = 1, if they are ranked in 

the opposite order and K = 0, if they are ranked in the same order. 
b) Objects i and j appear in one ranking and exactly one object (e.g. i) appears in the 

second ranking. Then penalty function K = 0 if i is ranked above j in the first ranking 
and K = 1 otherwise. 

c) Object i (but not j) appears in one ranking and object j (but not i) appears in the second 

ranking. Then K = 1. 
d) Objects i and j appear in one ranking but nor i or j appears in the second ranking.  

Then we don’t know the order of i and j in the second ranking and penalty function K  
= p, where p is an optional parameter. One can assign p = 0 (optimistic approach), p = 
0.5 (neutral approach) or p = 1 (pessimistic approach) for such a pair (i, j). 

 
Analogically, other measures such as Spearman’s footrule metric or Hausdorff metric can be 
generalized and converted into generalized correlation coefficients (for details see [4]).  
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7 Conclusion 
 
Similarity among rankings can be measured by appropriate distance or metric functions, and 
their normalized quantities, such as Pearson’s, Kendall’s and Spearman’s correlation 
coefficients, or dot product of vectors. These measures evaluate similarity among rankings, 
thus providing useful information on agreement or disagreement between experts who 
compiled them. In ordinal consensus ranking problem, where a final consensus ranking from 
a given set of rankings have to be achieved, it can be assumed that rankings with higher 
correlation (reflecting better agreement among experts) may naturally lead to more 
meaningful final consensus ranking and better agreement among consensus ranking methods 
such as Borda-Kendall’s method of marks, CRM, DCM or MAH. However, the relationship 
between ranking’s similarity and methods’ agreement have to be established by future 
research.  
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