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Abstrakt 
Při řešení úloh optimalizace portfolia se většinou využívají metody matematického 
programování. Tyto metody však nemohou být použity, pokud zavedeme omezení počtu 
držených aktiv. K řešení takto definovaného problému je nutno použít jednu z mnoha 
heuristických metod (genetické algoritmy, neuronové sítě nebo algrotimus rojení částic). 
V tomto příspěvku je využito binárního algoritmu rojení částic a metody kvadratického 
programování při hledání efektivní množiny řešení při optimalizaci portfolia. V článku jsou 
použity dvě množiny vstupních dat. První množinu tvoří akcie zahrnuté do indexu Dow Jones 
Industrial Average, druhou pak akcie zahrnuté do indexu Standard & Poor's 500. V závěru 
příspěvku jsou graficky srovnány nalezené efektivní množiny pro různá omezení počtu 
držených akcií. 
 
Abstract 
Mathematical programming methods dominate in the portfolio optimization problems, but 
they cannot be used if we introduce a constraint limiting the number of different assets 
included in the portfolio. To solve this model some of the heuristics methods (such as genetic 
algorithm, neural networks and particle swarm optimization algorithm) must be used. In this 
paper we utilize binary particle swarm optimization algorithm and quadratic programming 
method to find an efficient frontier in portfolio optimization problem. Two datasets are 
utilized. First dataset consists of the stocks incorporated in the Dow Jones Industrial Average, 
second dataset contains stocks from the Standard & Poor's 500. The comparison of found 
efficient frontiers for different limitation on the number of stock held is made at the close of 
the paper. 
 
 
 
Introduction 
Proper allocation of the funds is nowadays getting more and more important. With the 
increasing amount of the money fund managers administer, their responsibility is increasing 
and quantitative approaches get more attention than qualitative. In the field of the portfolio 
optimization the pioneer work was Markowitz mean-variance model [1]. Assuming that assets 
returns follow a multivariate normal distribution, we are concerned only in the portfolio 
expected return and variance. We are thus looking for the portfolios with maximum expected 
return and minimal variance. This Pareto efficient set of portfolios is called an efficient 
frontier (EF). Selection of one optimal portfolio from the efficient frontier then depends only 
on the risk attitude. 
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This relatively simple model is easily solvable by the quadratic programming methods. 
However for a practical purpose, there are two major weaknesses: (i) there is an evidence that 
assumed multivariate normal distribution of assets returns does not hold [2]; (ii) in the real 
world, we are interested in integer constraint of a number of assets desired to hold, or to limit 
the proportion of the assets into a certain interval. Limiting the number of different assets 
included in the portfolio decreases transaction cost, which can be very high utilized result of 
the unconstrained model and buying a small number of each asset. Also the monitoring of 
news and firm’s results is easier and so less costly with few assets in the portfolio. One 
approach to deal with this could be the use of mean-absolute deviation [3] instead of variance 
as a measure of risk. Problem is then solvable by linear programming methods. However, this 
approach has been showed to be insensitive to some extremes. Second approach is to use 
some heuristic method such as the genetic algorithms, neural networks, simulated annealing 
or particle swarm optimization [4-10]. These methods have showed good results. 
 
The goal of the paper is to exemplify the use of binary particle swarm optimization algorithm 
in finding the efficient frontier in non-linear portfolio optimization problem. The paper is 
organized as follows. Section 1 is focused on the portfolio optimization problem, both general 
and constrained version are described. In section 2 the attention to particle swarm 
optimization algorithm as a used optimization method is given. In section 3 application and its 
results on the data from large-cap common stocks actively traded in the United States are 
presented. 
 
 
1. Description of portfolio optimization problems 
Portfolio optimization consists of a portfolio selection problem in which we want to find the 
optimum way of investing a particular amount of the money in a given set of securities or 
assets [7]. While without any information about the investor's risk attitude we are not able to 
find one optimal portfolio, we are looking for the Pareto efficient frontier. This frontier 
contains all possible portfolios for which we are not able to lower the risk with the same level 
of the expected return or to heighten the expected return without increasing the risk. The 
model in which we consider simple portfolio optimization without any limitation on the 
maximum number of the different assets we want to hold will be referred as general portfolio 
optimization problem (Problem P1). The model in which we limit the number of different 
assets held will be referred as cardinality constrained portfolio optimization problem 
(Problem P2). 
 
Problem P1 - General portfolio optimization problem 

Objective function: 
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In this problem N is the number of the available assets, ix  is the proportion of available 

amount invested in asset i, ijσ  is the covariance between assets i and j, )( iRE  is the expected 

return of i-th asset and )( ∗
RE  is a desired expected portfolio return. The above described 

minimizing problem is easily solvable by the nonlinear (quadratic) programming methods. 
The efficient frontier is constructed when solving this model for different values of )( ∗

RE . 

 
As any other model even the unconstrained portfolio optimization model has many premises, 
which make it very simplified. On the one hand it allows us to find the solution easily; on the 
other hand the model could not be utilized for a real world application. For example, suppose 
we are looking for the minimal risk portfolio, which is compounded from the assets 
incorporated in the Standard & Poor's 500 index. In fact it is not a big problem to find such a 
portfolio but it would be nearly impossible to invest money into it. It is due to high number of 
assets we must invest to, which stands for a high transaction costs. These transaction costs are 
generally dependent on the fact how often we rebalance the portfolio. For simplicity we will 
abstract from these costs in the paper. So in the real world we want to limit the number of 
assets we invest in. Introducing K as the desired number of different assets in the portfolio, we 
can extend the previous model to the cardinality constrained case (Problem P2). 
 
Problem P2 - Cardinality constrained portfolio optimization problem 

Objective function: 

 min jj
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All variables have the same meaning as in the Problem P1 and iz  is a binary variable taking 

the value 1 or 0 depending on if i-th asset is or is not included in the portfolio.  
 
The constrained portfolio optimization problem is a mixed-integer nonlinear (quadratic) 
programming problem for which the computationally effective algorithm does not exist [8]. 
To solve this problem we can utilize: (i) algorithms for solving mixed-integer nonlinear 
programs (see [11-15]); (ii) some heuristic method such as particle swarm optimization [4], 
simulated annealing [5, 6, 8], neural networks [7], genetic algorithms [8-10] and others  
[16-18]. In this paper a binary particle swarm optimization is used to find the optimal iz  and 

the weights are determined by the more standard quadratic programming approach. 
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2. Description of binary particle swarm optimization algorithm 
The original particle swarm algorithm was introduced and discussed in [19, 20]. It imitates 
birds flocking and fish schooling as it is searching in D-dimensional real numbers space for 
the best position. In this algorithm the certain number of particles is utilized, each particle's 
position representing solution of the problem. Particles move across the search space partially 
randomly and partially in the dependence of the personal and global best position discovered 
so far. Objective function imitates the space richness for food. So particles are clearly 
determined by their velocities and positions: 
 ( ) ( ))()()()()1( 2211 txgCtxpCtvtwtv jiijijijiji −+−+=+ ϕϕ , (1) 

 )1()()1( ++=+ tvtxtx jijiji , (2) 

where )1( +tv ji  is the velocity of the j-th particle in the i-th dimension in the iteration 1+t , 

)(tw  stands for momentum, 1C  and 2C  are constants, 1ϕ  and 2ϕ  are random numbers from 

interval <-1,1>, jip  is the personal best position found so far, ig  is the global best position 

found so far, )(tx ji  is the position of the j-th particle in the i-th dimension in the iteration t . 

The position of the j-th particle can be found as the sum of its previous position )(tx j  and the 

current velocity )1( +tv ji . The whole algorithm is shown in Fig. 1. After a particles 

initialization, there is the loop, in which the velocity and the position are repeatedly updated 
according to (1) and (2).  
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Fig. 1: Particle swarm optimization algorithm diagram 
 
In [21] the particle swarm algorithm was modified to operate on a binary variables and 
discrete binary version of the particle swarm algorithm was introduced (BPSO). There is in 
fact just one modification – particle's velocity jiv  now represents the probability of jix  taking 

the value 1. Since the probability must be in the interval [0,1], a logistic transformation of jiv  

is used. The position equation (2) is then changed as follows: 
 01))(()( ==< jijiji xelsexthenvSrandif , (3) 

where ()rand  is a random number from interval [0,1], )(⋅S stands for the logistic 
transformation function: 
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Equation (1) for the velocity remains unchanged, but )(tx ji , jip  and ig are now not real 

numbers but take values only either 0 or 1. 
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In this algorithm it is simple to implement the constraint C2 in Problem P2 – we repeat 
generating random numbers and if they are smaller than )( jivS  then we change the 

corresponding jix  to 1 until ∑
=

N

i

jix
1

 is equal to the desired number of assets held in the 

portfolio K.  
 
 
3. Application part – efficient frontier estimation 
In this section the efficient frontier of constrained portfolio optimization problem defined by 
Problem P2 is searched. Used data consists of two datasets, which correspond to weekly 
prices between January 2002 and December 2007 for the assets included in indices Dow 
Jones Industrial Average (DJI, yahoo finance ticker ^DJI) and Standard & Poor's 500 (S&P, 
yahoo finance ticker ^GSPC). Both datasets have been acquired from web server 
http://yahoo.finance.com, [22]. For both datasets stocks with the missing values were 
eliminated - datasets thus consist of 30 and 465 stocks respectively. Expected returns )( iRE  

and covariance matrix ijσ  were estimated on weekly basis from downloaded time series 

(January 2002 to December 2007), thus we assume that the returns and covariances of assets 
will remain unchanged. For each dataset we are looking for the 500 different optimal 
portfolios in dependence of the desired expected return )( ∗

RE  and the desired number of 

assets K. The problem of finding optimal portfolio is solved using the BPSO and the quadratic 
programming. The BPSO is used to find the optimal vector of logical variables iz  while the 

quadratic programming is utilized in the objective function to find the optimal weights of the 
selected assets. The implementation of BPSO algorithm is written in MATLAB, utilizing 
MATLAB’s pre-defined functions. 

 
 
3.1. Dow Jones Industrial Average 

Since the DJI dataset contains only 30 assets, it is possible to compare the results of BPSO 
with the results obtained by trying every possible combination of the assets held (brutal force 
method). This comparison is made on Fig. 2. We can see that the results are visually the same. 
As showed in [8], efficient frontier of the cardinality constrained model is a discontinuous 
curve with jumps. This means that some values of )( ∗

RE  are not rational (since there exist 

portfolios with the same or lesser risk and higher return). 
 
The time needed for the optimization is showed in Tab. 1. 
 

  Tab. 1: Time complexity of the brutal force method and BPSO algorithm 

The desired number 
of assets held (K) 

Brutal force BPSO 

2 0.220 seconds 1.178 seconds 
3 3.336 seconds 2.080 seconds 
4 29.842 seconds 2.712 seconds 

 

As we can see for K=2 the BPSO is slower than trying every possible combination of chosen 
assets. This is evoked by the small number of possible combination in the brutal force 
method. For K=3 the BPSO was quicker. For K=4 the BPSO was much quicker, using only 
10% of the time needed by the brutal force method. 
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Fig. 2: Cardinality constrained efficient frontier (CCEF) found by brutal force (left) and BPSO (right) for K=2 
(top), K=3 (middle), K=4 (bottom)  
 
 

3.2. Standard & Poor's 500  
Because of the high number of the stocks in the S&P dataset the brutal force method is not 
utilized for its time complexity. We consider only the BPSO algorithm, results of which are 
shown in Fig. 3. For better clarity the figure is zoomed and thus not the whole efficient 
frontiers are shown. We can see that the efficient frontier for K=3 is not delineated very well. 
From 500 portfolios found we utilize only 146 to draw efficient frontier, we exclude every 
portfolio which is not rational (which has the same or bigger risk and lesser return compared 
to other portfolios). For K=2 only 160 and for K=4 about 316 portfolios are used to draw the 
proper efficient frontier. This signifies that searching for efficient frontier in Problem P2 
when dealing with vector of 465 stocks is hard to solve for BPSO algorithm. On the other 
hand the results are given in the reasonable time. 
 
Visually CCEF for K=2 lays below CCEF for K=3, CCEF for K=3 lays below CCEF K=4. 
This is caused by the diversification. With the increasing number of different assets we invest 
in, the risk is decreasing while the expected return stays the same. We can see that efficient 
frontiers are very close to each other. Difference between CCEF for K=2 and K=4 is around 
0.1% for variances below 0.0025. This means 0.1% extra expected return if we allow 
investing into 4 assets instead of 2. 
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Fig. 3: Cardinality constrained efficient frontiers (CCEF) for S&P with limiting the number of different stocks 
included in the portfolio 
 
 

4. Conclusion 

This paper was focused on the problem of portfolio optimization. The cardinality constrained 
mean-variance model was utilized and solved using the binary particle swarm optimization 
algorithm and the quadratic programming. Two datasets were used. These datasets correspond 
to the weekly prices between January 2002 and December 2007 for the assets included in the 
indices Dow Jones Industrial Average for the first dataset and Standard & Poor's 500 for the 
second dataset. Datasets consist of 30 and 465 assets respectively. For each dataset 500 
different optimal portfolios were found and the cardinality constrained efficient frontier was 
drawn. The results were presented in section 3. We can conclude that for smaller dataset DJI 
the binary particle swarm optimization outperform the brutal force method in terms of the 
time complexity. The S&P dataset was a hard nut to crack for the proposed algorithm. But we 
can say that for this dataset the algorithm gives reasonable result in reasonable time. 
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Appendix 

 
Pseudo code for BPSO algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for 500 different ∗
R  

    randomly initialize all particles 
    evaluate all particles 

    find global best ig  and for each particle personal best jip  

    repeat  
            for each particle j 
                 compute new velocity according to Eq. 1  

                 for each dimension i if jiv < minv  then jiv = minv  

                 for each dimension i  if jiv > maxv  then jiv = maxv  

                0=jix  for each dimension i 

                 repeat  
                            i= ,1(rand number of dimension)  

                            1))()1,0(( =< jiji xthenvSrandif  

                 until ∑
=

N

i

jix
1

=K 

                 evaluate particle j 
            end 

            find new global best ig  and for each particle new personal best jip  

    until number of iterations reaches 100 
end 
 


