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Abstrakt

Cramerovo pravidlo poskytuje jako jedna z metod feSeni soustav linedrnich rovnic vypocet
feSeni s pouZzitim determinanti. Hesidn mizeme pouZzit pro zjisténi, zda je dany kriticky bod
(podeziely z extrému) lokdlni minimum nebo lokdlni maximum dané funkce dvou nebo vice
redlnych proménnych. V tomto clanku je pouziti Cramerova pravidla a Hesidnu
demonstrovano na optimalizacnich ulohach z ekonomické oblasti.

Abstract

The Cramer’s rule provides a method of solving a system of linear equations through the use
of determinants. The Hessian can be used for a test whether a given critical point is a local
minimum or maximum of a function of two or more real variables. In the article the use of the
Cramer’s rule and the Hessian is demonstrated on economic optimization problems.

Introduction

Determinants and Cramer’s rule are important tools for solving many problems in business
and economy. Especially for searching an optimal solution of the maximization profit or
minimization cost problems it can be very often apply. The article presents a popular
introduction in this mathematical theory; the methods are demonstrated on numerical
examples.

The article is organized as follows: in Section 1 is uses of Cramer’s rule, in Section 2 The
Hessian and in Section 3 is the Hessian use in optimization problems.

1. Uses of Cramer’s rule

Cramer’s rule (see [2], page 32) provides a simplified method of solving a system of n
linear equations with n variables in the form of Ax = b, where A is the matrix of the

coefficient, x is the vector unknowns and b is the vector constants in the right side. Cramer’s
etA,

det A

is the determinant of the coefficient matrix, and det A, is the determinant of a special matrix

rule states x; = , where x; is the ith unknown variable in a series of equations, det A

formed from the original coefficient matrix by replacing the column of coefficients of x;

with the column vector b. The matrix A must be regular (det A #0).
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Example 1.
The equilibrium conditions for two related markets (the price of pork is P, and the price

of beefis P,) are given by
18 P,— P, =87
—2P, +36P, =98

Find the equilibrium price for each market ( PT,, Fh ).

A solution:
The following systems of linear equations in the matrix form:

A

Find the equilibrium price for each market ( P, P, ).

18 -1
A=
{—2 36}
where det A =18(36)— (—1)(-2) = 646.
(87 -1
A=
198 36}
where det A, =87(36)—(-1)98 =3230.
(18 87
A, =
-2 98}

where det A, =18(98)—(-2)(87) =1938.
}—)b:detA1 =3230:5 }—)p :detA2 =1938:3
detA 646 detA 646
The equilibrium price for each market ( P,, P, )=(3,5).

and

Example 2.

The IS and LM equations can be reduced to the form
0,4Y +150 i =209

01Y =250 i= 35

Find the equilibrium level of income Y and rate of interest i.

A solution:
This problem is treated with Cramer’s rule

04 150
A=
{0,1 —250}

where det A = 0,4(—250)—150(0,1) = —115.
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209 150
A=
35 -250
where det A, =209(-250)—150(35) =-57500.
0,4 209
A, =
01 35
where det A, =0,4(35)—-209(0,1) =—6,9.

A - i _
detd, _=57500 _ 500 ana 7= = =% _0.06.

Y = =
detA —-115 detA 115

The equilibrium level of income Y =500 and rate of interest 2:0,06.

2. The Hessian

Let z=z(x,y) be areal function of two real variables. Let the the first-order derivatives

z, =z, =0 in a critical point (x,,y,) and let the second partial derivatives Zy, Zxy and z,y

exist in a neighbourhood of a critical point C(x,, y,) -
A sufficient condition for a multivariable function z=2z(x,y) to be at a local optimum
(where we find) is (see [3] pages 147-151)

1) Z0:2,>0 for a minimum
L%y <0 for a maximum

2) Lxr "Ly >(ny)2 .

A convenient test for this second-order condition is the Hessian. The Hessian IHI is a
determinant composed of all the second-order partial derivatives, with the second-order
direct partials on the principal diagonal and the second-order cross partials off the principal
diagonal. Thus,

Lo Ry

< <

yx Yy

[#|=

where z, =2z,

If the first element on the principal diagonal, the first principal minor, |H 1| 3w s
positive and the second principal minor

Z Z
H|=™ "|_ z.z. —(z.)
= <y 5 .
| 2| Txx "Ly (va) >0

4

yx yy

the second-order conditions for a minimum are met. When |H 1| >0 and |H z| > 0, the
Hessian [HI is called positive definite. A positive definite Hessian fulfills the second-
order conditions for a minimum.

If the first principal minor |H 1| =2, <0 and the second principal minor
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|H|—Z” Z,
2=, >0

X Yy

the second-order conditions for a maximum are met. When |H 1| <0 and |H 2| > 0, the
Hessian [HI is called negative definite. A negative definite Hessian fulfills the second-
order conditions for a maximum.

If |H 2| < 0, a critical point is a saddle and if |H 2| = 0, the test is inconclusive.

3. Higher-order Hessians

Given Y = Y(X;,X,,X3) the third-order Hessian is

Y Yo Vi3
|H| =DV Y IVn
Vi Voo Y33

where the elements are the various second-order partial derivatives of y:

2%y 9%y 9%y

- axf Y1z = 0x,0x, Y = 0x,0x, ete.

Y

Conditions for a local minimum or maximum depend on the signs of the first, second and

third principal minors, respectively. If |H 1| =Yu>0,

and |H3|:|H|>0

where |H 3| is the third principal minor, [H| is positive definite and fulfills the second-order

conditions for a minimum. If |H 1| =y, <0,

Y Y2

Yoa Y
[HI is negative definite and will fulfill the second-order conditions for a maximum. Higher-
order Hessians follow in analogous fashion. If all the principal minors of |HI are positive, [HI
is positive definite and the second-order conditions for a relative minimum are met. If all the
principal minors of [HI alternate in sign between negative and positive, [HI is negative
definite and the second-order conditions for a relative maximum are met.

and  |Hs|=|H|<0
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4. In this section the Hessian is used in optimization problems
Example 3.

Optimize the following function:

y=3x] —=5x, — x,x, +6x; —4x, +2x,%, +4x; +2x; —3x,X,
a) The first-order conditions are

ylza—y=6xl—5—x2—3x3 =0
ox,
dy
v, =——=—x,+12x, —4+2x, =0 (D
Xy
dy
V; =——=2x,+8x; +2-3x, =0
X3
which in matrix form is
6 -1 -3||x 5
A-x=|-1 12 2 X, = ,
-3 2 8 X3 -2
6 -1 -3
where A=| -1 12 2
-3 2 8

Using Cramer’s rule:
|A|=6 (92)+1 (-2)-3 (34)=448
|A)| = 5(92) +1(36) — 3(32) = 400
|A,| = 6(36)—5(-2) - 3(14) = 184
Ay = 6(=32) +1(14) - 3(34) = -8

Thus, X, = 490 _ 0,89 X, = 182 041 X, = =% _om
448 448 448

There is a critical point C(0,89; 0,41; -0,02)

b) Testing the second-order condition by taking the second-order partials of (1) to
form the Hessian,

Y, =6 Y =-1 Vi3 =-3

Yy =1 Yy =12 Vo3 =2
Yy =-3 Vi =2 Vi3 =8
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6 -1 -3

Thus, H|=|-1 12 2
-3 2 38
6 -1
where |H1|:6>0 |H2|:‘_1 12‘:71>0

and |Hs|=|H|=|A|=4485 0. With IHI positive definite.

There is a local minimum in a critical point C.
Y is minimized at the values.

Example 4.

A firm produces two goods (Q,,0,) in pure competition and has the following total
revenue and total cost functions:

TR =150, +180, TC=20? + 20,0, +30?

The two goods are technically related in production, since the marginal cost of one is

dependent on the level of output of the other (for example, BLQC =40, +20,) (see [4], [5],
1

[6]).
Maximize profits 7 for the firm, (a) Cramer’s rule for the first-order condition and (b) the
Hessian for the second-order condition.

(a) 7 =TR-TC =150, +18Q, —20; —20,0, —30;

The first-order conditions are

or

=x, =15-40,-20, =0
an 1 1 2
or

=7, =18-20,-60, =0
aQZ 2 1 2

In matrix form,

- -4 =210, B -15
SR I
=
where A = .

-2 -6
Solving by Cramer’s rule,

|A|=24-4=20 |A|=90-36=54  |A,|=72-30=42
— 54 4

Thus, =="=27 0, =—=21
u Ql 20 Qz 20
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There is a critical point C(2,7; 2,1).

(b) Using the Hessian to test for second-order condition,

-4 -2
=,
where |H1| =—4  and |Hz| =20, Hessian is negative definite.

There is a local maximum in a critical point C. Profits 7 is maximized.
Example 5.

Maximize profits for a producer of two substitute goods, given

P =130-4Q,-Q, P,=160-2Q,-50, TC=20Q; +20,0,+4Q;
Use (a) Cramer’s rule for the first-order condition and (b) the Hessian for the second-order
condition.

a) 1 =TR-TC, (see [4], [6] ), where TR =P.Q, +P,0,.
T= (80 - 5Q1 - 2Q2 )Ql + (50 - Q1 - 3Q2 )Qz - (2Q12 + 2Q1Q2 + 4Q22)

=130Q, +160Q, —50,0, —6Q; —90;

O o —130-50, —120, =0 ;Q” =7, =160-50, —180, =0

1 2

- {—12 —5}{@} {—130}
A-Q= = ,
-5 -18| 0, —~160

-12 -5
where A={ }

In matrix form,

-5 -18
|A|=191
- g =190
|A|=1540 Q= oy~ 8.06
_ g, =270 _
A4,|=1270  Q,= op = 665

There is a critical point C (8,06; 6,65).

~12 -5
® "5 g

where |H1| ==12 and |H2| =191 Hessian is negative definite.

There is a local maximum in a critical point C. Profits 7 is maximized.
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Conclusion

The equilibrium of the markets in IS-LM model is solved by using determinants and Cramer’s
rule for a system of linear equations. Hessian matrix for test of optimal solution is presented
in the problem cost minimization and profit maximization in a company.
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