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Abstrakt 

Cílem článku je demonstrovat užití Laplaceovy transformace k určení současné hodnoty 

perpetuitních dluhopisů (perpetuit) při různém toku výnosů (dividend). Perpetuity jsou 

dluhopisy bez data splatnosti, což znamená, že dividenda je placena držiteli dluhopisu 

(většinou ročně) do nekonečna. Současná hodnota perpetuity při konstantní dividendě je 

rovna podílu této dividendy a diskontní míry. Když se však dividenda mění v čase, je výpočet 

současné hodnoty perpetuity složitější. V první části článku je ukázáno, že Laplaceovu 

transformaci toku výnosů lze využít k výpočtu současné hodnoty perpetuity při spojitém 

úrokování, a užitím inverzní Laplaceovy transformace je dále možné zrekonstruovat neznámý 

tok výnosů ze známé současné hodnoty perpetuity. Ve druhé části článku je užití Laplaceovy 

transformace ilustrováno na několika příkladech. 

 

Abstract 

The aim of the article is to demonstrate the use of the Laplace transform to the evaluation of 

consols’ present value under different streams of returns (dividends). Consols (or perpetual 

bonds, perpetuities) are bonds with no maturity, which means that interest is paid to a 

bondholder perpetually (usually annually) forever. The present value of a consol, when 

constant interest is paid, is simply a ratio of this interest and interest rate. However, when 

interest payments (stream of returns to a bondholder) change in time the evaluation of 

consol’s present value is more complicated. In the first part of this article it is shown that the 

Laplace transform of a stream of returns can be used to the evaluation present value of a 

consol under assumption of continuous compounding; and moreover, with the inverse Laplace 

transform an unknown stream of returns can be reconstructed from the known consol’s 

present value. In the second part of the paper, the use of the Laplace transform for the present 

value evaluation is illustrated by examples. 

 

 

Introduction 

The Laplace transform, named after French mathematician and astronomer Pierre-Simon 

Laplace (1749-1827), is the integral transformation widely used in many areas of physics and 

engineering. It belongs into broader class of integral transformations including Fourier, 

Hartley, Hilbert, Poisson, Weierstrass and other transforms. The main area of the application 

of the Laplace transform is the solution of ordinary and partial differential equations (see e.g. 

[3], [8], [9] or [10]), because the Laplace transform converts differential equations into 

algebraic ones, which are easier to handle with. Another area of application includes signal 

and image processing, the theory of electric circuits, probability theory or impuls-response 

analysis. In economics, the Laplace transform can be applied to the analysis of dynamics and 

shocks in time series of macroeconomic indicators [4], for pricing barrier options [7], analysis 
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of continuous-time stochastic processes such as Brownian motion [6] or to the evaluation of 

the present value of consols (see [2] or [5]).  

 

This article focuses on the last issue. Consols (or perpetual bonds, perpetuities) are bonds with 

no maturity, which means that an interest is paid to a bondholder perpetually (usually 

annually) forever. The name comes from British government bonds originally issued in 1751 

after years of wars to consolidate British economy. Occasionally, other governments issue 

consols too, such as Canadian government in the late 1970s. The value of a consol is equal to 

the ratio of interest and interest rate. Therefore, consol’s value rises when interest rates 

decreases and vice versa. However, this formula holds only when interest is constant in time. 

The Laplace transform provides an easy way to the evaluation of consol’s present value under 

different streams of returns (when interest changes), as well as it provides a solution to the 

inverse problem: finding an unknown stream of returns when a bond’s present value is 

known. Therefore, the aim of the article is to demonstrate the use of the Laplace transform to 

the evaluation of consol’s present value. 

 

The article is organized as follows: in Section 2 the Laplace transform and its basic properties 

are introduced, in Section 3 the present and the future value of payments is briefly described 

and Section 4 provides the evaluation of the present value of consols as well a solution to the 

inverse problem with unknown streams of return. 

 

1. The Laplace transform 

Definition 1. Let f(t) be a piece-wise continuous function and let K(t, p) be a continuous 

function of two variables called a kernel. The integral transform T of f(t) is defined as:  

( ) ( ) ( , )

b

a

T p f t K p t dt      (1) 

According to Definition 1, the integral transform assigns a function f(t) a unique function 

T(p).  The function f(t) is the original, the function T(p) is the image. Different kernels K(t, p) 

yield different integral transforms. For  , ptK p t e , 0a   and b    in Definition 1 the 

Laplace transform is obtained: 

 

Definition 2. Let f(t) be a piece-wise continuous function of time t, 0t  , and let Cp . Then  

the Laplace transform of a function f(t) is defined as: 

  
0

( ) ( ) ( ) ptL f t p f t e dt



       (2) 

The improper integral on the right hand side of (2) absolutely converges for any time function 

f(t) such that ( ) tf t Me  for 0t  ,  0M   and a  , see [8]. 

 

Theorem 1. Functions L(p) and f(t) from Definition 2 are related uniquely by relation (2).  

Proof:  see e.g. [9] or [10]. 

 

Theorem 2. Laplace transform is linear:      ( ) ( ) ( ) ( )L af t bg t aL f t bL g t    

Proof: the theorem follows directly from the integral definition. 

 

The Laplace transform of the most widely used functions is shown in Table 1. The use of 

these formulas is demonstrated in Section 4. Another important properties of the Laplace 

transform, such as the inverse Laplace transform (the Bromwich integral) or Borel’s 
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convolution theorem are omitted here as they are not necessary for the explanation, but they 

can be found in [3], [8], [9] or [10]. 
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Dirac’s δ-function 1 

 
Table 1. The Laplace transforms of selected functions ( Ra , , 

0Nn ). 

 

 

2. The present and the future value  

The future value (FV) of the present value (PV) of a payment after n periods of time (usually 

years) with the effective interest rate r is given as:  

 nrPVFV  1 .     (3) 

For the present value of a payment we obtain: 

  n
rFVPV


 1 .     (4) 

The future value of the present value with periodic compounding of interest, where n is the 

number of times interest is compounded per year and t denotes the number of years, is given 

as: 
nt

n

r
PVFV 








 1 .     (5) 

 

 

 

And for the present value we obtain: 
nt

n

r
FVPV











 1 .     (6) 
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Suppose that compounding is continuous ( n ). With the use of well-known limit for the 

Euler’s number: lim 1

n

r

n

r
e

n

 
  

 
, see [1], we transform (5) and (6) into the following 

formulas for the future value and the present value respectively:  
rtePVFV  ,      (7) 

rteFVPV  .     (8) 

 

Now, let’s consider a stream of returns (or payments) instead of a single return. This situation 

might be relevant for large companies with continuous returns such as chain stores, electricity 

providers, Internet commerce and others. To achieve the present value of a stream of returns 

 S t  over a period of M years, we divide the interval [0, M] into n subintervals such 

that: Mtttt n  ...0 210 . We assume that in each interval  ii tt ,1  of a length 1 iii ttt  

a single return  S i  is realized. Then the future and the present value of the stream of returns 

)( itS  with the interest r are given as:  





n

i
i

rt
i tetSFV i

1

)( ,     (9) 

 





n

i
i

rt
i tetSPV i

1

)( .    (10) 

 

Making intervals  ii tt ,1  in (9) and (10) infinitesimally small ( n ) yields the following 

integral formulas: 

         
M

rtdtetSFV
0

)( ,     (11) 

     


M
rtdtetSPV

0

)( .     (12) 

 

In the case of consols a peridic interest is paid virtually forever, so the value M is infinite 

( M  ) and from (11) and (12) we obtain: 

0

( ) rtFV S t e dt



  ,     (13) 

0

( ) rtPV S t e dt



  .     (14) 

By the comparison of (2) and (14) we see that to obtain the present value of a stream of 

returns  S t  we have to find the Laplace transform of a function  S t , where p in Definition 

2 corresponds to the interest rate r. Moreover, it is possible to recover unknown stream of 

returns from a known present value through the inverse Laplace transform (or we can simply 

use results provided in Table 1 ‘backwards’). The use of the Laplace transform for the consols 

present value evaluation is illustrated in the next Section. 

 

 

3. The evaluation of consol’s present value by the Laplace transform 

In this Section the use of the Laplace transform for the evaluation of consol’s present value 

with different streams of returns is demonstrated on several examples.  
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Example 1.  Let the stream of returns  S t be a constant value k and interest rate be r. What is 

the present value of a consol?  

From (14) and Table 1 (1
st
 row) we get:  

0

rt k
PV k e dt

r



    

The ratio 
k

r
 is a well-known formula for the present value of a consol. For example, if k = 

1$/per year and r = 2 % (0.02), then PV = 50 $.  

 

Example 2.  Let r be interest rate and let the stream of returns  S t be exponentially growing 

at a rate q, q < r. What is the present value of a consol?  

From (14) and Table 1 (3
rd

 row) we get:  

0

1qt rtPV e e dt
r q



  
 . 

For example, if q = 1 % and r = 2 %, then PV = 100 $. 

 

Example 3.  Let the stream of returns be linearly growing,  S t = t with interest rate r. What 

is the present value of a consol?  

From (14) and Table 1 (2
nd

 row) we get:  

2

0

1rtPV t e dt
r



   . 

For example, if r = 3 %, then PV = 1111.1 $. 

 

Example 4. The present value of a consol with the interest rate r is 
 

1

1r r 
, find the stream 

of returns  S t .  

First, we transform a given fraction in two partial fractions:
 

1 1 1

1 1r r r r
  

 
 Then we use 

Table 1 (1
st
 and 3

rd
 row) to find the original to these images: 1 1

1L
r

  
   
 

 and 

1 1

1

tL e
r

  
 

 
. With the use of Theorem 2 (linearity of the Laplace transform) we finally 

obtain the stream of returns   1tS t e   $/year. Finally, Theorem 1 ensures this is the only 

solution to the problem. 

 

Example 5. Use the result of Example 1 to find the stream of returns  S t  for the present 

value given as the Heaviside function: ( ) 1f x   for 0x   and ( ) 0f x   for 0x  .   

If PV = 1, then from Example 1 we obtain: ( )k r S t r   . The stream of returns must be 

constant and equal to the interest rate r. 

 

 

 

 



90 

Conclusion 

The aim of the article is to demonstrate the application of the Laplace transform in economics, 

namely in the evaluation of consol’s present value of consols when different streams of 

returns (constant, linearly or exponentially growing, etc.) are involved. The Laplace transform 

allows easy computation of consol’s present value from the known stream of returns, but it 

also enables to reconstruct unknown pattern of returns from the present value through inverse 

Laplace transformation. In the last section of the paper, the use of the Laplace transform is 

illustrated on several examples. 
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