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Introduction 

In the process of education it is often advisable to show the connection between theory and 

practice. In this article several  economic applications of matrices are presented – from quite 

simple to more complicated. These examples are simple so that difficult economic theories do 

not have to be explained. While the solved problems and data given in examples can be 

simplified in comparison with real values for easier computation, the economic significance is 

not affected. It is important to show possibilities of applications rather than to obtain an 

accurate result. On the other hand, it is interesting to include some real problems if possible. 

 

1 Matrix operations 

1.1  Scalar multiplication 

Formulation of the problem  

A store discounts commodities c1, c2, c3, c4 by 30 percent at the end of the year.  The values of 

stocks in its three branches B1, B2, B3 prior to the discount are given in Table 1.  Using 

matrices, find the value of stock in each of B1, B2, B3 after the discount. 

 

Table 1: Values of stocks in B1, B2, B3 

 c1 c2 c3 c4 

B1 65000 40000 55000 35000 

B2 50000 30000 60000 45000 

B3 70000 55000 75000 50000 
Source: Illustrative data 

 

Solution 

A 30 percent reduction means that the commodities are being sold for 70 percent of their 

original value.  If we organize the information given in Table 1 into a matrix V1, then the 

matrix  

V2 = 0.7 V1       

expresses the value of  stock after the discount: 
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 V2 = 0.7 V1  = 0.7
















50000750005500070000

45000600003000050000

35000550004000065000

 = 
















35000525003850049000

31500420002100035000

24500385002800045500

. 

 

1.2 Distributive law for matrix multiplication 

Formulation of the problem  

A store sells commodities c1, c2, c3 in two its branches B1, B2. The quantities of the 

commodities sold in B1, B2 in a week are given in Table 2, the individual prices of the 

commodities are given in Table 3, the costs to the store are given in Table 4. Find the store’s 

profit for a week, using 

a) total concepts 

b) per-unit analysis 

to show that matrix multiplication is distributive. 

 

Table 2: Quantities of commodities       Table 3: Selling prices          Table 4: Costs

 c1 c2 c3 

B1 200 350 100 

B2 250 400 150 
Source: (Table 2, 3, 4) Illustrative data 

       

c1 2.00 

c2 4.00 

c3 5.00 
 

                

c1 1.50 

c2 3.00 

c3 4.00 
 

Solution 

The quantities (Q) of the commodities, the selling prices (P) and the costs (C) of the 

commodities can be represented in matrix form:  

         Q = 









150400250

100350200
                                     P = 

















00.5

00.4

00.2

                                         C = 

















00.4

00.3

50.1

. 

a) Using total concepts: 

The total revenue in B1 is: 

230000.510000.435000.2200   

and in B2:  

.285000.515000.440000.2250   

These calculations can be written using a product of two matrices: the total revenue (TR) is 

given by the matrix QP: 

TR = QP = 









150400250

100350200

















00.5

00.4

00.2

 = 








2850

2300
. 

Similarly, the total cost (TC) is given by the matrix QC: 

TC = QC = 









150400250

100350200

















00.4

00.3

50.1

 = 








2175

1750
. 

Profits (Π) are  

Π = TR – TC = QP – QC = 








2850

2300
– 









2175

1750
 = 









675

550
. 

b) Using per-unit analysis: 

The per-unit profit (U) is 
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U = P – C = 

















00.5

00.4

00.2

 – 

















00.4

00.3

50.1

 = 

















00.1

00.1

50.0

. 

The total profit (Π) is given by the matrix QU: 

Π = QU =  









150400250

100350200

















00.1

00.1

50.0

 = 








675

550
. 

From a) and b) ve have  Π =  QP – QC  and Π = QU = Q(P – C).  Thus 

QP – QC  = Q(P – C). 

 

1.3 Product of matrices   

Formulation of the problem 

Let us consider five factories, each of them needs to supply each other. Determine the number 

of possibilities to transport commodities from one factory to the other one with one change at 

most, if there are truck and train connections as given thereinafter. 

 

Solution 

Let us denote the factories as 1, 2, 3, 4, 5 and define the 55  matrix A:   aii = 0 and for ji   

we put ai j= 1 if there is a truck connection between i and j, and aij = 0 otherwise. Because of 

two way connection between i and j the matrix A is symmetric. 

For example the matrix 

























01000

10111

01010

01101

01010

A  

expresses that there is a truck connection between  factory 1 and factory 2 (as a12 = a21 = 1), 

whereas there is no connection between  factory 1 and factory 3 (as a13 = a31 = 0) etc. 

In a similar way we define the matrix T representing a train connection: 

.

00110

00001

10001

10000

01100























T  

Then the matrix 

























00001

21211

10001

11102

10001

AT  

gives the number of possibilities how to get from one of the factories to the other one in two 

steps –  by  truck at first and then by  train. If we denote the elements of the matrix AT as 

(at)ij, we can see that for example (at)45 = 2 –  there are two possibilities how to get from the 
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factory 4 to the factory 5 (but not from the factory 5 to the factory 4 – the order train-truck 

makes a difference). 

For example, since 

(at)45  =  a41 t14+ a42 t25+ a43 t35+ a44 t45+ a45 t55 = 0+1+1+0+0, 

it is possible to get from factory 4 to factory 5 changing in 2 or in 3.   

Similarly, the matrix 

























02111

01010

02010

01000

11121

TA  

gives the number of possibilities how to get from one of the factories to another one by a train 

at first and then by a truck.    

While there are for example two possibilities of connection between factory 4 and factory 5 in 

the order truck-train, there is no connection between 4 and 5 in the order train-truck. 

The number of all the connections between the particular factories with one change at most is 

given by the matrix   

.

03222

32333

23022

23203

23232























 TAATTA  

For example, we can see that there are three possibilities to get from the factory 2 to the 

factory 4 – one possibility of a direct connection (as a24=1) and two possibilities with a 

change – one in the order truck-train ((at)24  =1) and one in the order train-truck ((ta)24  =1).       

 

2 System of linear equations 

Formulation of the problem 

Average salaries in Czech Republic for the years 1990, 1995, 2000 and 2005 are subsequently 

3 286, 8172, 13 219, 18 344 crowns. The values, rounded in order to compute easily without a 

calculator, are given in Table 5. 

 

Table 5: Average salaries in Czech Republic 

 1990 1995 2000 2005 

Thousands of crowns 3 8 13 18 
Source: Web portal Kurzycz [online]. Available: http://www.kurzy.cz/makroekonomika/mzdy/ 

 

Taking into consideration these data, we estimate the average salary in 2015. 

 

Solution 

We consider the time to be an independent variable and the salary a dependent variable – we 

obtain a function of one variable. If we denote the year 1990 as 0, 1995 as 1, 2000 as 2 and 

2005 as 3, then we have four points [0,3], [1,8], [2,13], [3,18] in plane. We are looking for a 

function whose graph approximately goes through these points. If we draw the picture, we can 

see that the points seem to lie on a straight line (see Figure 1).  
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Figure 1: A line passing through the given points 

 

 
Source: author’s own processing 

 

We will try to find a linear function so that coordinates of the given points satisfy the equation 

y = ax+b of this function: 

.183

132

81

30









ba

ba

ba

ba

 

We obtained a system of linear equations represented by the augmented matrix 

.
3

8

1

1

0

1

18

13

8

3

1

1

1

1

3

2

1

0































 

The solution is a = 5, b = 3. It is really surprising that the linear system has a solution – the 

given points lie exactly on a straight line! The equation of this line is 

y = 5x+3. 

To estimate the average salary in 2015 we substitute x = 5 (the value corresponding to the 

year 2015) into the equation y = 5x+3 and obtain y = 28.  

 

Let us note that if the system has no solution (the given points do not lie on a straight line) it 

is possible to find the least squares solution of this system - see below.  

 

3 Least squares approximation   

Formulation of the problem 

The ratios of households in Czech Republic having computers (in percentage) are given in 

Table 6. 

 

We find the least squares approximating parabola for these data, compute the norm of the 

least squares error and estimate the ratio of households having computers in the year 2010. 
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 Table 6: Ratios of households with computers 

 % 

1990 3 

1995 7 

2000 21 

2005 42 
Source: Web portal of Czech Statistical Office: Česká republika od roku 1989 v číslech. [online]. Available: 

http://www.czso.cz/cz/cr_1989_ts/0803.pdf 

 

Solution 

As in the previous problem we denote the year 1990 as 0, 1995 as 1, 2000 as 2 and 2005 as 3. 

In this case it is obvious that the points [0,3], [1,7], [2,21], [3,42] do not lie on a straight line 

(see Figure 2). 

 

Figure 2: A least squares approximating parabola 

 
Source: author’s own processing 

 

We will try to find a parabola that gives the least squares approximation to the given four 

points. Substituting these points into the equation of a parabola y = ax
2
+bx+c, we obtain the 

system of linear equations 

4239

2124

711

300









cba

cba

cba

cba

 

represented by the augmented matrix 

.

3

3

7

7

0

1

3

1

00

00

20

11

42

21

7

3

1

1

1

1

39

24

11

00











































 

This system is inconsistent – the four given points do not lie on a parabola. To find a parabola 

that fits the points as much as possible, we use the least squares approximation. The least 

squares solution (Poole, 2003, p. 581) of the system  

 A x  = b    ( mn

nm RbRxA  ,, ) (1) 
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is the vector x~  such that  

 ||||||~|| xAbxAb   for all nRx  (2) 

and can be obtained as a solution of the equation  

 A
T 

A x  = A
T
b . (3) 

In our case we have  

.,

42

21

7

3

,

139

124

111

100































































c

b

a

xbA  

We compute products A
T 

A and A
T
b , put into the equation A

T 
A x  = A

T
b and obtain the 

equation  


















































73

175

469

4614

61436

143698

c

b

a

 

that is the system of linear equations 

.

73

175

496

4

6

14

614

1436

3698

















 

The solution of this system is a = 4.25, b = 0.35, c = 2.85 and  

x~ = (4.25, 0.35, 2.85)
T
. 

The desired equation of parabola is 

y = 4.25x
2
+0.35x+2.85. 

To obtain the least squares error 

 ||~|||||| xAbe   (4) 

we compute the product xA~  at first: 

.

15.42

55.20

45.7

85.2

85.2

35.0

25.4

139

124

111

100

~


























































xA  

Then  

|| e || = ||(0.15, –0.45, 0.45, –0.15)
T
|| = 45.0 . 

We estimate the ratio of households having computers in the year 2010 substituting x = 4 into 

the equation y = 4.25x
2
+0.35x+2.85: y = 72.25  72. Thus, using the data in the table 3 the 

ratio of households having computers in the year 2010 is estimated at 72%.
 

 

4 Eigenvector 

Formulation of the problem 

Three producers (denoted by P1, P2, P3) organized in a simple closed society produce three 

commodities c1, c2, c3. Each of these producers sells and buys from each other, all their 

products are consumed by them and no other commodities enter the system (the ”closed 

model” (Friedberg, 2003, p. 176)). The proportions of the products consumed by each of P1, 

P2, P3 are given in Table 7: 
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Table 7: Proportions of products c1, c2, c3  consumed by P1, P2, P3 

 c1 c2 c3 

P1 0.6 0.2 0.3 

P2 0.1 0.7 0.2 

P3 0.3 0.1 0.5 
Source: Illustrative data 

 

For example, the first column lists that 60% of the produced commodity c1 are consumed by 

P1, 10% by P2 and 30% by P3. As we can see, the sum of elements in each column is 1.    

Let us denote x1, x2, x3 the incomes of the producers P1, P2, P3. Then the amount spent by P1 

on c1, c2, c3 is 0.6 x1+0.2 x2+0.3 x3.  

The assumption that the consumption of each person equals his or her income leads to the 

equation 0.6 x1+0.2 x2+0.3 x3 = x1, similarly for producers P2, P3. We obtain the system of 

linear equations  

1111

1111

1111

5.01.03.0

2.07.01.0

3.02.06.0

xxxx

xxxx

xxxx







 

This system can be rewritten as the equation   A x  = x , where  



















5.01.03.0

2.07.01.0

3.02.06.0

A  

and 

  Txxxx .,, 321  

Moreover, we assume the income to be nonnegative, i.e. 0ix , i=1, 2, 3 (we denote x  o ). 

We can rewrite the equation A x  = x  into the equivalent form (A–I) x  = o , represented by 

the augmented matrix 

.

0

0

0

5.0

2.0

3.0

1.0

3.0

2.0

3.0

1.0

4.0




















 

It means that we are looking for an eigenvector of A corresponding to the eigenvalue 1. 

The general solution of the system has the form x  = t(13,11,10)
T
; the condition x  o  is 

satisfied for t   0 . 

Thus, to ensure that this society operates, the incomes of the producers P1, P2, P3 have to be in 

the proportions 13:11:10. 

 

5 Markov chains. Eigenvector   

Formulation of the problem 

Suppose a market research monitoring a group of 300 people, 200 of them use a product A 

and 100 use a product B. In any month 80% of product A users continue to use it and 20% 

switch to the product B and 90% of product B users continue to use it and 10% switch to the 

product A. The percentages of users loyal to the original product are assumed to be constant in 

next months – it means the probability of changing from one product to the other is always the 

same. That is a simple example of so called Markov chains. Following this research we 

determine, how many people will be using each product one, two and k months, respectively, 

later, and estimate the state in the long run. 
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Solution  
The number of product A users after one month is given by the following formula 

,1701001.02008.0   

since 80% of 200 A users (that is 2008.0  ) stay with A and in addition 10% of 100 B users 

(that is 1001.0  ) convert to A. 

Similarly, the number of product B users is given by the following formula 

,1301009.02002.0   

We can rewrite these two formulas using the matrix (transition matrix) 











9.02.0

1.08.0
T  

(an entry tij represents the probability of moving from state corresponding to i to state 

corresponding to j): 

.
130

170

100

200

9.02.0

1.08.0

























 

If we denote   0x  o  = (200,100)
T
 (initial vector) and  1x  = (170,130)

T
, we can write 

1x = 0xT . 

Numbers of each of A and B users after one month are given by the components of the vector 

1x  (let us note that these components are not necessarily integers – they are only 

approximations of numbers of people). 

Similarly to computing numbers of users after one month we determine numbers of users after 

two months (represented by the vector 2x ): 




























151

149

130

170

9.02.0

1.08.0
12 xTx  

(we can also write 2x  = 1xT = T(T 0x ) = T 
2

0x ). 

It is obvious that numbers of A and B users after k months are determined by 

 
1 kk xTx   or   0xTx k

k   (5) 

 (an entry (t
k
)ij  of this matrix T

k
  represents the probability of moving from state 

corresponding to i to state corresponding to j in k transitions). 

It is possible to show (Poole, 2003, p. 323) that if the transition matrix is a matrix, which has 

some power positive, then vectors kx  (state vectors) converge for large k to an unique vector 

x  (steady state vector); when this vector is reached, it will not change by multiplying by  T: 

 xTx   (6) 

(it means that T has 1 as an eigenvalue and the steady state vector is one of eigenvectors 

corresponding to this eigenvalue). Moreover, steady state vector does not depend on the 

choice of the initial vector 0x . To determine numbers of A and B users after a long time we 

compute the steady state vector (I is a unit matrix):  

 oxIToxxTxTx  )( .     (7) 

Since  

,
1.02.0

1.02.0












 IT  

we obtain the following homogeneous linear system 











0

0

1.0

1.0

2.0

2.0
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the general solution of which is  

x  = (t, 2t)
T
. 

Since components of each of state vectors represent numbers of A resp. B users, the sum of 

these components must be equal to the global number of users; in our case components of the 

steady stage vector must satisfy 

t+2t = 300, 

from which it follows that t=100 and  

x  = (100, 200)
T
. 

After a long time, 100 people will be using the product A and 200 people will be using the 

product B (and this result does not depend on the initial distribution of A and B users). 

 

Conclusion 

The aim of this article is to show easy examples, which point out to the use of matrices in 

economic applications. To use the tools of linear algebra for solving some real problems it is 

usually necessary to have deeper knowledge of linear algebra or other branches of science. In 

this article a few examples motivated by tasks in economy are provided. Their solutions 

illustrate the use of linear algebra tools such as matrix operations, eigenvectors, Markov 

chains, system of linear equations and least squares approximation. These examples can be 

used in mathematical courses taught at economics-oriented universities. 
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