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Abstract: Smartcities are, among other things, well-known for solving optimization problems. One of 

the problems could be an optimal location of a central warehouse, which supplies branches. The 

branches are not the same; they naturally have a different location and a volume of traffic. The central 

warehouse must be situated in the area within the optimal distance that allows for minimal transportation 

costs. It can happen that the optimal solution to the abovementioned problem lies in a prohibited area 

such as forests, military areas. This paper deals with the problem of an optimal location of the central 

warehouse that must not lie in the prohibited area. The aim of the article is to present a mathematical 

model based on nonlinear principle, which can offer a solution to the mentioned problem. The main 

principle in modelling is to create a user-friendly and affordable model and to find an optimal solution 

to a particular situation. Such a model must take into consideration the dynamic development of 

logistics, construction of distribution warehouses and the chain stores nearby. The model gives results 

for the first phase of the planning optimal positioning. The mathematical solution must be implemented 

into a realistic situation. The actual location of the central warehouse must be adapted to, for example 

the reach of the highway.   
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Introduction 

Logistics has recently acquired great significance in the industry due to the rapidly growing 

interest in Supply Chain Management. One of the important open issues in logistics is the 

effective integration of logistical components such as transportation cost with facility location 

models since the two are highly inter-related in practice. In particular, locations, flows, 

shipment compositions, and shipment cycle times are highly inter-dependent. (Siddhartha 

2002). 

 

Research studies are devoted to the development of mathematical models for distribution centre 

locations. The choice of locations for distribution centres is among the most critical 

management decisions. Aikens (1985) presented nine basic location models, which included 

the simple incapacitated facility location model, the capacitated facility location model, the 

dynamic and stochastic capacitated facility location models etc. All objective functions of these 

models were created to minimize the transportation costs and were fixed investment costs. 

Holmberg (1999) studied the exact solution method for the incapacitated facility location 

problem in which the transportation costs were nonlinear. It considered not only the fixed costs 

and transportation costs but also the inventory costs, solved by the Dantzig–Wolfe (D–W) 

decomposition method. Owen and Daskin (1998) considered the dynamic nature of facility 
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location problem and the stochastic nature of the customer’s demand and developed simple 

dynamic and stochastic location models. Recently, Klose and Drexl (2005) reviewed some of 

the contributions to the current state of facility location models for the distribution system. Zhou 

et al. (2002) investigated the balanced allocation of customers to multiple distribution centres 

with a genetic algorithm approach. Syam (2002) investigated a model and methodologies for 

the location problem with logistical components. (Jossef 1985, Siddhartha 2002, Sum 2008). 

 

The article describes possibilities for solving a problem related to the optimal location of the 

central point (e.g. abovementioned warehouse). This problem can be found in a wide range of 

industries. It is the location of the central warehouse between stores. The aim is to achieve a 

minimum total cost. (Gros 1996, Jablonský 2007, Jurová 2016, Kavan 2007).  

  

We solve a mathematical problem where we know the coordinates of the set of points (1, 2, 

3,…, n) and the coordinates of the central point are unknown. The problem has only two 

unknown variables (X and Y coordinate for the central point). The central point should be placed 

to minimize the total transportation costs to other points. The problem is complicated by the 

fact that each fair trade consumes a different amount of goods. If the volume of traffic from a 

central point into the other points is the same, the central point lays in the geometric centre of 

gravity in the middle of the set of points. In practice, these situations appear not very often. It 

is necessary to consider various volumes of transport. 

 

The target location of a central point must comply with the restrictive conditions of defined 

areas. Concurrently, a solution must fulfil conditions of minimizing overall transport 

performance (e.g. tonne-kilometre counts). The lower the transport performance (the better the 

decision), the lower the transportation costs. If the conditions are fulfilled, a higher efficiency 

of the logistics system can be expected. 

 

1 The theoretical basis of a mathematical model 

The mathematical model deals with a central point location. It is based on a situation where a 

central point supply a network of stores and a different quantity of products is transported to 

each store. The entire mentioned situation is depicted in figure 1. 

 

Figure 1: Location of the central point in a set of point 

 
 
Source: own  
 

The central point is located with respect to the local constraints, respectively the areas with the 

impossibility of construction. 
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The problem is to find a location with minimal costs, 

 

min,
1
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where i is a number of stores, Qi is the volume of traffic from a central point to store i, zi is the 

distance from a central point to store i and F is an objective function that will minimize 

transportation costs. 

 

This problem can be seen as linear, but the distance zi is based on Pythagorean Theorem 
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where x and y are coordinates of the central point and xi and yi   are coordinates of i-point (store). 

 

If we combine formula 1 and 2, we obtain 
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The described problem is called the Steiner – Weber's problem, see in Rollo (1973). It is not 

hard to solve it with e.g. MS Excel by employing solver (search for the objective function F). 

The article shows the practical application of nonlinear programming using restrictive 

conditions in the form of implications (if-then). 

 

In figure 2, the shaded area represents the place where the central point cannot be placed. This 

area can be represented as houses, forests, river, etc. The central point is identified by a square 

of yellow colour and other sections (e.g. stores) are marked with rings of red colour. 

Coordinates of the centre point [x, y] are marked with a red colour, where x must not lie within 

the area a1 to a2 and y must not lie in area b1 to b2.  

 

More mathematically, 

 
[𝑥, 𝑦] ∉ (𝑎1; 𝑎2) ×  (𝑏1; 𝑏2).      (4) 

    

Unfortunately, this form cannot be written into MS Excel, so these restricted conditions need 

to be rewritten and transformed. 
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Figure 2: Restrictions in the location of the central point 

 
Source: own  

 

 

The prohibited area is defined as rectangle with coordinates [a1,b1], [a1,b2], [a2,b1], [a2,b2]. Then 

we calculate the values of as and bs 

 

𝑎𝑠 =
𝑎1+𝑎2

2
,        (5) 

 

𝑏𝑠 =
𝑏1+𝑏2

2
.            (6) 

 

For better understanding, we also define constants k1 and k2. 

 

                   𝑘1 =
𝑎2−𝑎1

2
,                                   (7) 

 

𝑘2 =
𝑏2−𝑏1

2
.                        (8) 

 

The situation is graphically represented in the figure 3. 

 

Figure 3: Range definition by using the distance from the centre of the area 

 
Source: own  
 

Then the process of creating the restricted conditions begins. It is based on the following 

consideration: 
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When the distance X from the point as is greater than k1 then the Y coordinate is arbitrary. And 

when the distance X from the point as is smaller than k1 then the Y coordinate must be greater 

than b2  or smaller than b1, 

 

𝐼𝐹 (𝑋 − 𝑎𝑆)2 ≤ 𝑘1
2             𝑇𝐻𝐸𝑁               (𝑌 − 𝑏𝑆)2  ≥  𝑘2

2.                           (9) 

 

The second powers ensure that all the numbers will be positive. However, the restrictions in 

this implication form are still not acceptable. 

 

Fortunately, we can convert implication into disjunction by using 
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We apply this mathematical rule to formula 9 so the conditions will be 

      

(𝑋 − 𝑎𝑆)2 > 𝑘1
2              𝑂𝑅             (𝑌 − 𝑏𝑆)2  ≥  𝑘2

2.                           (11) 

          

Nevertheless, converting the implication to disjunction is still not sufficient. We use the process 

stated in Barahona (1998) to convert the formula 11 into two formulas 12 and 13, 

 

(𝑋 − 𝑎𝑆)2 ≥ 𝑘1
2 − 𝑀 ∙ 𝑡,     (12) 

   

(𝑌 − 𝑏𝑆)2  ≥  𝑘2
2 − 𝑀 ∙ (1 − 𝑡)    (13) 

 

where M is constant and t is a binary variable. 

 

As M is chosen a relatively high number (standardly M = 1 000). The central point has the X 

and Y coordinates and these are interconnected by the variable t. This ensures the central point 

from lying in the prohibited area. We can have two types of situations based on the value of the 

variable t. In the situation where t = 0, the X coordinate of the central point must be outside the 

prohibited area.  

 

This can be written as 

 

(𝑋 − 𝑎𝑆)2 ≥ 𝑘1
2 − 𝑀 ∙ 0 𝑟𝑒𝑠𝑝.  (𝑋 − 𝑎𝑆)2  ≥  𝑘1

2.                 (14) 

 

The formula 14 says that the distance between “X” and “as” must be larger as “k1”. Then “Y” 

coordinate of the central point may be any number, 

 

(𝑌 − 𝑏𝑆)2 ≥ 𝑘2
2 − 𝑀 ∙ (1 − 0)𝑟𝑒𝑠𝑝.  (𝑌 − 𝑏𝑆)2  ≥  𝑘2

2 − 𝑀.         (15) 

 

where this condition always applies because M is a high value. 

 

Analogically the same apply for t = 1 (The coordinate y must lie outside the prohibited area and 

X can then lie everywhere.) More details about this problem can be found in Barahona (1998). 

 

These conditions ensure that the restrictions are fulfilled. If the coordinate X lies in the 

prohibited area, the value of Y is either increased or decreased so that the point of the area will 

cross the prohibited area. In the mathematical solution (see figure 4), it is searched for values 
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of the variables X, Y, and t to the objective function F given by the formula (see formula 1) to 

acquire the minimum. 

 

Each time the solution will enter the prohibited area (obstacles for the central point) incurs one 

binary variable t. 

  

2 The result of the localization model of the central point 

The practical working of the model is explained in a particular situation. Let us illustrate it with 

a simple example: we have six stores positioned in different locations. Each store has its own 

position xi and yi and its volume of traffic Qi, see table 1. These values are the input values for 

computing the coordinates of the central point x,y.  

 

Table 1: The positions and volume traffic for six stores 
INPUTS - POINTS 

i xi yi Qi 

1 0 0 10 

2 0 50 20 

3 50 0 10 

4 50 50 30 

5 10 10 18 

6 20 5 9 

Source: own  
 

The output of the model is the figure 5 which shows computed coordinates of the central point 

(the green square) and fulfils the request of minimization of the objective function (the 

minimization of the whole traffic costs). The central point coordinates are [20.3; 22.6] and the 

total traffic costs are equal to 3022.6. 

 

Figure 4: Localization model of the central point 

 
Source: own  
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Figure 5: The solution of the model without respect to prohibited areas  

 
Source: own  
 

The main benefit of the compiled model is the possibility to add one or more prohibited areas 

in the form of restrictive conditions. Table 2 shows one restrictive condition and it can be seen 

that this restriction prohibits the original solution (see figure 5) because now there is a 

prohibited area here. 

 

Table 2: The prohibited areas 
PROHIBITED AREAS 

N 
x y 

FROM TO FROM TO 

1 10 35 15 40 

2     

Source: own  

 

Principle of calculation describes the formulas 16, 17 and 18. The formula 16 represent the 

formula 3 with values from the table 1. 

 

𝐹 = 10 ∙ √(𝑋 − 0)2 + (𝑌 − 0)2 +  20 ∙ √(𝑋 − 0)2 + (𝑌 − 50)2

+  10√(𝑋 − 50)2 + (𝑌 − 0)2  + ⋯  = 𝑚𝑖𝑛. 
 

The formula 17 represent the formula 12 with values from the table 2. 

(𝑋 −
10+35

2
)

2

≥ (
35−10

2
)

2

− 1 000 ∙ 𝑡                              (17) 

 

The formula 18 represent the formula 13 with values from the table 2. 

(𝑌 −
15+40

2
)

2

≥ (
40−15

2
)

2

− 1 000 ∙ (1 − 𝑡)                       (18) 

 

Where t is (0 or 1) binary variable. The result of the calculation is: X = 17.6 and Y = 15.0.  

 

The model finds out the central point coordinates based on the minimal value of the objective 

function with respect to prohibited areas. The solution is depicted in the figure 6. After the 

recalculation, the central point coordinates are [17.6; 15.0]. 

 

 

 

 

  

(16) 
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Figure 6: The solution of the model with respect to prohibited areas 

 
Source: own  
 

The result gives an idea of the location of the central point (for example central warehouse). 

This is a mathematical model to describe the real situation. Unfortunately, this description will 

never be perfect.  

 

Conclusion 

At the present, it is recognized that location and time are the prominent underlying features for 

any scientific observation. Every experience and every observation that is formed by an 

intelligent mind in a scientific/engineering sense is fundamentally associated with location and 

time. Localization technology in today´s “the smart” world has started to become popular. In 

the recent years, scientific researches solve problems using time, localization etc. As the smart 

applications in the world expand, need for localization in challenging environments grows. 

Today, a number of challenges are facing the localization science and technology as a 

fundamental enabling technology for the evolution of the so-called smart world. 

 

This paper deals with determining the localization of a warehouse in interaction with its 

localization restriction. The aim is to design a model that would be a tool for determining the 

location of a warehouse. The correct location of the warehouse will contribute to transportation 

costs. In view of the robustness of the problem, it is necessary to use the exaggerated methods 

to find the optimal solution, i.e. a warehouse localize so that will minimize of transportation 

costs. The created model can also be a tool that will save time. Saving time lies in the speed of 

finding a solution for the localization of a warehouse. 

 

The optimized deployment problem has been enhanced by the created model. There is a further 

extension of the real constraints, i.e. the optimum point usually cannot be a completely arbitrary 

coordinate system in practice. The basis for the creation of the model was to use special 

modifications linear programming and environment MS Excel. The model includes special 

restrictive conditions. It uses the implications raised when "A" must pay the condition "B". 

 

Our model uses the Euclidean distance. This distance is shorter than real distance between 

points. This is a disadvantage of the model, but the authors assume that the difference (above 

mentioned) is the same for all distances. This will cause the value of the extreme will change, 

but not the position of the extreme (the position of the central point). Of course, there is a space 

for improvement of our model and for scientific work, for example by defining the correction 

coefficients to distance-extending. 

 

Future use of the model will involve the extension of restrictive conditions. It is necessary to 
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detail the "potential" to describe the position of a warehouse according to restrictive constraints. 

The follow-up research will focus on positioning, which will be entered using “polar 

coordinates”. 
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