Acta academica karviniensia 2016, 16(2):95-105 | DOI: 10.25142/aak.2016.017
DETERMINATION OF VALUE AT RISK AND CONDITIONAL VALUE AT RISK BY ASSUMING ELLIPTICAL DISTRIBITION
- 1 Vysoká škola báňská-Technická univerzita Ostrava, Ekonomická fakulta, Sokolská 33, 701 21 Ostrava, Email:katerina.zelinkova@vsb.cz
- 2 Vysoká škola báňská-Technická univerzita Ostrava, Ekonomická fakulta, Sokolská 33, 701 21 Ostrava, Email:ales.kresta@vsb.cz
The importance of risk management is nowadays one of the most important activities of financial institutions. One of the most commonly used methods for measuring and managing market risk is the indicator of Value at Risk (the minimum predicted loss for given significant level and time horizon) and Conditional Value at Risk (the average of expected losses that exceed the value of the Value at Risk). The aim of submitted article is the estimation of Value at Risk and Conditional Value at Risk for given shares of stock's portfolio assuming elliptical distribution of probability. Significant level is determined for 15 %, 10 %, 5%, 1% and 0.5 % for time horizon one day. Firstly, fitting probability of time series will be estimated. It can be assumed that the least appropriate type of distribution for the time series will be the normal distribution. Next, VaR and CVaR will be calculated for all given probability distribution. Due to the fact that it is assumed that empirical time series and portfolio time series will correspond to either Student or Laplace distribution then the most appropriate model for estimating VaR and CVaR will be these two distributions.
Keywords: Conditional Value at Risk, Elliptical distribution, Laplace distribution, Student distribution, Value at Risk
JEL classification: G11, G24
Received: February 17, 2016; Accepted: August 24, 2016; Published: June 30, 2016 Show citation
References
- ALEXANDER, C., 2008a. Quantitave Methods in Finance. Chichester: John Wiley& Sons. ISBN 978-0-470-99788-8.
- ALEXANDER, C., 2008b. Value at Risk models. Chichester: John Wiley& Sons, ISBN 978-0-470-99800-7.
- ARTL, J. a M. ARTLOVÁ, 2003. Finanční časové řady. Praha: Grada. ISBN 80-247-0330-0.
- ARTZNER, P., F. DELBAEN, J.-M. EBER a D. HEATH, 1999. Coherent measures of risk. Mathematical finance, 9(3), 203-228. ISSN 1467-9965.
Go to original source...
- BEIRLANT, J., Y. GOEGEBEUR, J. SEGERS a J. TEUGELS, 2004. Statistics of Extremes: Theory and Applications. Chichester: John Wiley& Sons. ISBN 978-0-471-97647-9.
Go to original source...
- CIPRA, T., 2008. Finanční ekonometrie. Praha: Ekopress. ISBN 978-80-86929-43-9.
- FAMA, E. F., 1965. The behavior of stock market prices. Journal of Business, 38(1), 34-105. ISSN 0021-9398.
Go to original source...
- HULL, J., 2007 Risk Management and Financial Institutions. New Jersey: Pearson Education. ISBN 013-239790-6.
- JORION, P., 2007. Value at Risk: The New Benchmark for Managing Financial Risk. 2. vyd. New York: McGraw-Hill. ISBN 978-0-07-146495-6.
- LEWIS, N., 2003. Market Risk Modelling. London: Risk Books. ISBN 1-904339-07-7.
- ZHUO, S., Q. LU, L. HAN, Y. LIU a F. HU, 2014. A mean-CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution. Annals of Operations Research, 226(1), 727-739. ISSN 1572-9338.
Go to original source...
- ZMEŠKAL, Z. et al., 2004. Financial models. Ostrava: VŠB - TU Ostrava. ISBN 80-86119-87-4.