Acta academica karviniensia 2011, 11(3):24-33 | DOI: 10.25142/aak.2011.043
SOLVING CARDINALITY CONSTRAINED PORTFOLIO OPTIMIZATION PROBLEM BY BINARY PARTICLE SWARM OPTIMIZATION ALGORITHM
- Ing. Aleš Kresta, Katedra financí, Ekonomická fakulta, VŠB-TU Ostrava, Sokolská tř. 33, 701 21 Ostrava, ales.kresta@vsb.cz
Mathematical programming methods dominate in the portfolio optimization problems, but they cannot be used if we introduce a constraint limiting the number of different assets included in the portfolio. To solve this model some of the heuristics methods (such as genetic algorithm, neural networks and particle swarm optimization algorithm) must be used. In this paper we utilize binary particle swarm optimization algorithm and quadratic programming method to find an efficient frontier in portfolio optimization problem. Two datasets are utilized. First dataset consists of the stocks incorporated in the Dow Jones Industrial Average, second dataset contains stocks from the Standard & Poor's 500. The comparison of found efficient frontiers for different limitation on the number of stock held is made at the close of the paper.
Keywords: portfolio optimization, binary particle swarm optimization
JEL classification: C61, G11
Published: September 30, 2011 Show citation
References
- MARKOWITZ, H. M. Portfolio selection. Journal of Finance, 1952, vol. 7, n. 1, p. 77-91.
Go to original source...
- MILLS, T. C. Stylized facts on the temporal and distributional properties of daily FTSE returns. Applied Financial Economics, 1997, vol. 7, n. 6, p. 599-604.
Go to original source...
- KONNO, H.; YAMAZAKI, H. Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market. Management Science, 1991, vol. 37, n. 5, p. 519-531.
Go to original source...
- CURA, T. Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real World Applications, 2009, vol. 10, n. 4, p. 2396-2406.
Go to original source...
- CRAMA, Y.; SCHYNS, M. Simulated annealing for complex portfolio selection problems. European Journal of Operational Research, 2003, vol. 150, n. 3, p. 546-571.
Go to original source...
- DERIGS, U.; NICKEL, N.H. On a local-search heuristic for a class of tracking error minimization problems in portfolio management. Annals of Operations Research, 2004, vol. 131, n. 1-4, p. 45-77.
Go to original source...
- FERNANDEZ, A.; GOMEZ, S. Portfolio selection using neural networks. Computers and Operations Research, 2007, vol. 34, n. 4, p. 1177-1191.
Go to original source...
- CHANG, T. J., et al. Heuristics for cardinality constrained portfolio optimisation. Computers and Operations Research, 2000, vol. 27, n. 13, p. 1271-1302.
Go to original source...
- OH, K. J.; KIM, T. Y.; MIN, S. Using genetic algorithm to support portfolio optimization for index fund management. Expert Systems with Applications, 2005, vol. 28, n. 2, p. 371-379.
Go to original source...
- YANG, X. Improving portfolio efficiency: A Genetic Algorithm approach. Computational Economics, 2006, vol. 28, n. 1, p. 1-14.
Go to original source...
- FLOUDAS, C. A. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press: New York, 1995.
Go to original source...
- BORCHERS, B.; MITCHELL, J. E. A computational comparison of branch and bound and outer approximation algorithms for 0-1 mixed integer nonlinear programs. Computers and Operations Research, 1997, vol. 24, n. 8, p. 699-701.
Go to original source...
- BIENSTOCK, D. Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, Series B, 1996, vol. 74, n. 2, p. 121-140.
Go to original source...
- HANSEN, P.; JAUMARD, B.; MATHON, V. Constrained nonlinear 0-1 programming. ORSA Journal on Computing, 1993, vol. 5, n. 2, p. 97-119.
Go to original source...
- BORCHERS, B.; MITCHELL, J.E. An improved branch and bound algorithm for mixed integer nonlinear programs. Computers and Operations Research, 1994, vol. 21, n. 4, p. 359-367.
Go to original source...
- DERIGS, U.; NICKEL, N. H. Meta-heuristic based decision support for portfolio optimization with a case study on tracking error minimization in passive portfolio management. OR Spectrum, 2003, vol. 25, n. 3, p. 345-378.
Go to original source...
- MANSINI, R.; SPERANZA, M. G. Heuristic algorithms for the portfolio selection problem with minimum transaction lots. European Journal of Operational Research, 1999, vol. 114, n. 2, p. 219-233.
Go to original source...
- SCHLOTTMANN, F.; SEESE, D. A hybrid heuristic approach to discrete multiobjective optimization of credit portfolios. Computational Statistics and Data Analysis, 2004, vol. 47, n. 2, p. 373-399.
Go to original source...
- EBERHART, R.; KENNEDY, J. New optimizer using particle swarm theory. In Proceedings of the International Symposium on Micro Machine and Human Science. 1995.
- KENNEDY, J.; EBERHART, R. Particle swarm optimization. In IEEE International Conference on Neural Networks - Conference Proceedings. 1995.
- KENNEDY, J.; EBERHART, R. A discrete binary version of the particle swarm algorithm. In Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics. 1997. p. 4104-4109.
- Yahoo! Finance - Business Finance, Stock Market, Quotes, News [online]. 2009 [cit. 2009-09-01]. Dostupné z WWW: <http://finance.yahoo.com/>.
- ZMEŠKAL, Z.; TICHÝ, T.; DLUHOŠOVÁ, D. Finanční modely. Praha: Ekopress, 2004. ISBN 80-86119-87-4.