Acta academica karviniensia 2013, 13(3):56-68 | DOI: 10.25142/aak.2013.042

BUILDING SYNTHETIC SOCIAL NETWORKS USING ASSOCIATION RULES AND CLUSTERING METHODS: CASE STUDY ON GLOBAL TERRORISM DATABASE

Jan Górecki1, Kateřina Slaninová2
1 Slezská univerzita, Obchodně podnikatelská fakulta, Univerzitní nám. 1934/3, 733 40 Karviná, Email:gorecki@opf.slu.cz
2 Slezská univerzita, Obchodně podnikatelská fakulta, Univerzitní nám. 1934/3, 733 40 Karviná, Email: slaninova@opf.slu.cz

The authors of the paper present an approach for datamining methods combination (method for association rules extraction and clustering method are combined) which is used for synthetic social networks construction which afterwards represents potentially interesting relations in analyzed data. Described approach is feasible for general data, principles of described approach, examples and experiments are illustrated on a part of unique database, which contain data about terroristic attack committed on all over the World (Global Terrorism Database). Thus this paper also extend framework of papers focused on analysis of this unique database.

Keywords: association rules, community analysis, graph visualization, synthetic social network
JEL classification: C38, Z00

Received: June 22, 2012; Accepted: June 19, 2013; Published: September 30, 2013  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Górecki J, Slaninová K. BUILDING SYNTHETIC SOCIAL NETWORKS USING ASSOCIATION RULES AND CLUSTERING METHODS: CASE STUDY ON GLOBAL TERRORISM DATABASE. Acta academica karviniensia. 2013;13(3):56-68. doi: 10.25142/aak.2013.042.
Download citation

References

  1. AGRAWAL, R., T. IMIELINSKI and A. SWAMI, 1993. Mining association rules between sets of items in large databases. In Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'93), Washington, DC, pp. 207-216. Go to original source...
  2. BENOÎT, G., 2002. Data Mining. Annual Review of Information Science and Technology. Vol. 36, pp.265-310. Go to original source...
  3. CARRINGTON P. J., J. SCOTT and S. WASSERMAN, 2005. Models and Methods in Social Network Analysis. Cambridge: Cambridge University Press. Go to original source...
  4. FREEMAN, L. C., 2004. The Development of Social Network Analysis: A Study in the Sociology of Science. Empirical Press.
  5. GODWIN, A., R. CHANG, R. KOSARA and W. RIBARSKY, 2008. Visual analysis of entity relationships in global terrorism database. In SPIE Defense and Security Symposium. Go to original source...
  6. HÁJEK, P. and T. HAVRÁNEK, 1987. Mechanizing Hypothesis Formation. Springer Verlag, Berlin.
  7. HAN, J. and M. KAMBER, 2006. Data Mining Concepts and Techniques. Elsevier Science Ltd., pp.745. ISBN 1-55860-901-6.
  8. HAND, D. J., P. SMYTH and H. MANILLA. Principles of Data Mining. MIT Press, 2001. ISSN 0-262-08290-X.
  9. LAFREE, G. and L. DUGAN, 2007. "Global Terrorism Database 1970-1997", [Computer file]. ICPSR04586-v1. College Park, MD: University of Maryland [producer], 2006. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor]. Go to original source...
  10. LEE, J., 2008. Exploring Global Terrorism Data: A Web-based Visualization of Temporal Data. In ACM Crossroads, Vol. 15, (2), pp. 7-16. Go to original source...
  11. ŠIMŮNEK, M., 2003. Academic KDD project LISP-Miner. In A. Abraham, K. Franke, K. Koppen (Eds.), Advances in Soft Computing - Systems Design and Applications. Springer Verlag, Heidelberg, pp. 263-272. Go to original source...
  12. WASSERMAN, S. and K. FAUST, 1994. Social Network Analysis. Cambridge: Cambridge University Press. Go to original source...
  13. P. HAJEK, I. HAVEL and M. CHYTIL, 1996: The GUHA method of automatic hypotheses determination. Computing 1, fasc. 4, 293-308. Go to original source...
  14. JONES, J., R. CHANG, T. BUTKIEWICZ and W. RIBARSKY, 2008. Visualizing uncertainty for geographical information in Global Terrorism Database. In SPIE Defense and Security Symposium. Go to original source...
  15. KOSARA, R., F. BENDIX and H. HAUSER, 2006. Parallel sets: visual analysis of categorical data. IEEE Transactions on Visualization and Computer Graphics 12(4):558-564. Go to original source...
  16. WANG, X., E. MILLER, K. SMARICK, W. RIBARSKY and R. CHANG, 2008. Investigative visual analysis of Global Terrorism Database. In Journal of Computer Graphics Forum. Volume 27, Issue 3, pages 919-926, May 2008. Go to original source...
  17. ZHANG, H., B. CLARK and E. FOKOUÉ, 2009. Principles and theory for Data Mining and Machine Learning. Springer. Go to original source...