Acta academica karviniensia 2018, 18(3):41-49 | DOI: 10.25142/aak.2018.019

MODIFIED STEINER-WEBER PROBLEM WITH ADDITIONAL RESTRICTIVE CONDITIONS

Josef Koą»álek1, Pavla Ko»átková Stránská2
1 CTU in Prague, Faculty of Mechanical Engineering, Karlovo náměstí 13, 121 35 Prague 2
2 CTU in Prague, The Masaryk Institute of Advanced Studies, Kolejní 2637/2a, 160 00 Prague 6

Smartcities are, among other things, well-known for solving optimization problems. One of the problems could be an optimal location of a central warehouse, which supplies branches. The branches are not the same; they naturally have a different location and a volume of traffic. The central warehouse must be situated in the area within the optimal distance that allows for minimal transportation costs. It can happen that the optimal solution to the abovementioned problem lies in a prohibited area such as forests, military areas. This paper deals with the problem of an optimal location of the central warehouse that must not lie in the prohibited area. The aim of the article is to present a mathematical model based on nonlinear principle, which can offer a solution to the mentioned problem. The main principle in modelling is to create a user-friendly and affordable model and to find an optimal solution to a particular situation. Such a model must take into consideration the dynamic development of logistics, construction of distribution warehouses and the chain stores nearby. The model gives results for the first phase of the planning optimal positioning. The mathematical solution must be implemented into a realistic situation. The actual location of the central warehouse must be adapted to, for example the reach of the highway.

Keywords: central point, localization, mathematical model, minimization transportation costs, optimal solution, restrictive conditions, warehouse
JEL classification: C44, C61, O18, R59

Received: June 7, 2018; Revised: June 30, 2018; Accepted: September 19, 2018; Published: September 30, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Koą»álek J, Ko»átková Stránská P. MODIFIED STEINER-WEBER PROBLEM WITH ADDITIONAL RESTRICTIVE CONDITIONS. Acta academica karviniensia. 2018;18(3):41-49. doi: 10.25142/aak.2018.019.
Download citation

References

  1. AIKENS, C.H., 1985. Facility location models for distribution planning. European Journal of Operational Research, 22(1), 263-279, ISSN 0377-2217. DOI: 10.1016/0377-2217(85)90246-2. Go to original source...
  2. BARAHONA, F. and D. JENSEN, 1998. Plant location with minimum inventory. Mathematical Programming, 83(1), 101-111, ISSN 0025-5610. Go to original source...
  3. GROS, I., 1996. Logistika. Praha: V©CHT. ISBN 80-7080-262-6.
  4. HOLMBERG, K., 1999. Exact solution methods for uncapacitated location problem with convex transportation costs. European Journal of Operational Research, 114(1), 127-140, ISSN 0377-2217. DOI: 10.1016/S0377-2217(98)00039-3 Go to original source...
  5. JABLONSKÝ, J., 2007. Programy pro matematické modelování. Praha: V©E. ISBN 978-80-245-1810-7.
  6. JOSSEF, P. and S. D. MARK, 1985. A warehouse location-routing problem. Transportation Research Part B: Methodological, 19B, 381-396, ISSN 0191-2615. DOI: 10.1016/0191-2615(85)90052-9. Go to original source...
  7. JUROVÁ, M. a kol., 2016. Výrobní a logistické procesy v podnikání. Praha: Grada. ISBN 978-80-247-5717-9.
  8. KAVAN, M., 2007. Projektový management inovací. Praha: ČVUT. ISBN 978-80-01-03601-3.
  9. KLOSE, A. and A. DREXL, 2005. Facility location models for distribution system design. European Journal of Operational Research, 162(1), 4-29, ISSN 0377-2217. DOI: 10.1016/j.ejor.2003.10.031. Go to original source...
  10. OWEN, S. H. and M. S. DASKIN, 1998. Strategic facility location: a review. European Journal of Operational Research, 111(1), 423-447, ISSN 0377-2217. DOI: 10.1016/S0377-2217(98)00186-6. Go to original source...
  11. ROLLO, J., 1973. Praktické příklady z operační analýzy. Praha: Redakce ekonomické a polytechnické literatury.
  12. SIDDHARTHA, S., 2002. A model and methodologies for the location problem with logistical components. Computers & Operations Research, 29(9), 1173-1193, ISSN 0305-0548. DOI: 10.1016/S0305-0548(01)00023-5. Go to original source...
  13. SUN, H. et al., 2008. A bi-level programming model and solution algorithm for the location of logistics distribution centers. Applied Mathematical Modelling, 32(4), 610-616, ISSN 0307-904X. DOI: 10.1016/j.apm.2007.02.007. Go to original source...
  14. SYAM, S. S., 2002. A model and methodologies for the location problem with logistical components. Computers & Operations Research, 29(9), 1173-1193, ISSN 0305-0548. DOI: 10.1016/S0305-0548(01)00023-5. Go to original source...
  15. ZHOU, G., H. MIN and M. GEN, 2002. The balanced allocation of customers to multiple distribution centers in the supply chain network: a genetic algorithm approach. Computers & Industrial Engineering, 43(1), 251-261, ISSN 0360-8352. DOI: 10.1016/S0360-8352(02)00067-0.g. Go to original source...